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Generally, a q-ary block code C = {c1, . . . , cM}, cm = (cm,1, . . . , cm,n), cm,i ∈ A, over

a finite alphabet A, |A| = q, and of the code rate R = ld M
n is any subset of An. In

order to make encoding of block codes less spatially complex for greater values of n and

M , A is usually provided with some algebraic structure. The most investigated family of

block codes in coding theory are linear block codes CGF = [M,R = k
n ] over finite fields

A = GF(q) = {0, 1, ψ3, . . . , ψq}, which are k-dimensional vector subspaces of the vector

space An. The most attractive property of q-ary linear block codes is that all codewords

(exponentially many, M = qRn) can be generated with linear complexity (in n) using a

generator matrix, while the asymptotical performances (when n→∞) are not degraded,

i.e. their capacity Rc and error exponent E(R) are equal to the capacity and error exponent

of the corresponding coding channel. Unfortunately, this is no more valid for the optimal

decoding problem for CGF, which is NP-complete. Only some subfamilies of these codes

are suboptimally decodable with low-degree polynomial complexity. Both encoding and

decoding are executable on the symbolic level, without the necessity of using a labeling of

the symbols in A with elements in IN.

A very convenient property of CGF is that the set of Hamming distancesHm = {dH(cm, cj) =
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|{i : cm,i 6= cj,i}|}Mj=1 of some codeword cm to all other codewords in the code is the same

for each codeword, i.e. q-ary linear block codes are Hamming distance invariant. Further-

more, the set Hm is a permutation of the set of Hamming weights WH = {wH(cm) =

dH(0, cm)}Mm=1 of codewords. Accordingly, the Hamming distance between any two code-

words equals the Hamming weight of their difference (which is again a codeword of the

same code), i.e. q-ary linear block codes are Hamming weight characterizable. An incon-

venient property of the Hamming distance for q > 2 is that it measures only the fact that

the symbols at the same position in two distinguished codewords differ or not, but gives

us no information on how much they differ.

Transmission of codewords of the block code C over waveform channels (power or band-

limited) requires a mapping f of the symbol alphabet A into a finite dimensional Euclidean

real vector space IRν , which leads to a ν-dimensional vector (or signal point) constellation

Sν , i.e.

f : A → Sν = {s1, . . . , sq} ⊂ IRν , (1)

sl = (sl,1, . . . , sl,ν); sl,µ ∈ IR, l = 1, . . . , q; µ = 1, . . . , ν. The energy of the vector (or signal

point) sl is E(sl) = |sl|2 =
∑ν
µ=1 s

2
lµ
, while the Euclidean distance between two signal

points sl and sj is

dE(sl, sj) =

√√√√
ν∑

µ=1

(sl,µ − sj,µ)2.

A vector constellation Sν is characterized by the expected energy

E(Sν) =
q∑

l=1

P [sl]E(sl), (2)

(where P [sl] are the prior probabilities of signal points) and by the Euclidean distance

distribution

D(Sν) = {dE(sl, sj) | l < j; l, j = 1, . . . , q}. (3)

Instead of the Euclidean distance very often only the minimum Euclidean distance is

considered

dEm(Sν) = min
Sν
D(Sν). (4)

The mapping f induces a mapping of the q-ary block code C into the N = n ·ν dimensional

Euclidean real vector space IRN and defines the Euclidean representation E of C, i.e.

E = {xm = (sm,1, . . . , sm,n) = (xm,1, . . . , xm,N )}Mm=1 . (5)
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The corresponding coded waveforms used for signaling over a waveform channel are always

of the form

xm(t) =
N∑

i=1

xm,i · φi(t); m = 1, . . . ,M, (6)

where Φ = {φi(t)}Ni=1 are orthonormal functions of waveform duration T ,

T∫

0

φi(t)φj(t)dt =





1 if i = j

0 if i 6= j,
(7)

so that the mean-square difference between two waveforms is

δ2
m,j =

T∫

0

[xm(t)− xj(t)]2dt = d2
E(xm,xj) =

n∑

i=1

d2
E(sm,i, sj,i), (8)

and the corresponding waveform and codeword energies are

em = E(xm) =

T∫

0

x2
m(t)dt =

n∑

i=1

E(sm,i) =
N∑

j=1

x2
m,j m = 1, . . . ,M. (9)

Consequently, for waveform channel models the relevant distance measure is the Euclidean

distance, and the measure of the intensity of the impact of the additive channel noise n(t)

is the signal-to-noise ratio

SNR =
E[E ]

E[|n|2]
, (10)

where E[E ] =
∑M
m=1 P [xm]E(xm) is the expected energy of the codeword xm in E and

E[|n|2] is the expected energy of the noise vector n = (n1, n2, . . . , nN ) (which is the

representation of n(t) over the set of orthonormal functions Φ).

The Euclidean distance precisely expresses the quantity of the difference between signal

points, between Euclidean representations E of codewords from C, and between corre-

sponding coded waveforms, for all values of q ∈ IN. Only for q = 2 the corresponding

Hamming distance is proportional to the squared Euclidean distance for all mappings f .

For q > 2 there exists no other distance measure on the symbolic level (metric induced

only by algebraic structures on finite alphabets A), which is generally proportional to

the Euclidean metric induced through the mapping f . Thus, the very useful properties

of Hamming distance, the distance invariance and weight characterization, are in general

no longer valid for the induced Euclidean distance. Because of that the calculation and

estimation of Euclidean distance distributions, and thereby the performances of E and
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the corresponding waveform set, is very cumbersome, and for large N and M practically

impossible. This is the true bottleneck when using nonbinary algebraic (symbolic) codes

on the discrete time or waveform channel.

One possibility to overcome this incompatibility of Hamming and induced Euclidean

distances could be to search for particular mappings f which preserve the distance in-

variance and weight characterization for induced Euclidean distances. Loeliger gives in

[Loe91, Loe92] a general condition for such mappings in case the symbol alphabet A is

provided at least with a group structure (G, ∗) of the following form

dE(f(g), f(g′)) = dE(f(g−1 ∗ g′), f(e)), ∀g, g′ ∈ G, (11)

where e denotes the neutral element of (G, ∗). These mappings are called matched map-

pings to the group. The corresponding vector constellation S ∗ν is Euclidean distance in-

variant and Euclidean weight representable, where the Euclidean weights are {WE(sl) =

dE(f(e), f(g)) = dE(s1, sl)}ql=1, when f(e) = s1 and f(g) = sl.

First examples for such matched mappings were introduced by Massey and Mittelholzer

([Mas89, MasMit89]) for linear codes over the ring A = Zm (the integers mod m) where

the vector constellation S∗2 was the M -PSK point arrangement.

In this paper we will show that the asymptotical performances of one of the most popular

family of linear block codes over GF(q), the Reed-Solomon (RS) codes, are bad on the

AWGN channel model for all matched mappings defined on the additive group of GF(q).

The construction of the proof of this statement is as follows.

1. Any vector constellation S∗ν matched to a group is a group code for the Gaussian

channel (see [Loe92]).

2. Group codes for the Gaussian channel are Euclidean distance invariant spherical

codes (see [Sle68]).

3. For RS codes the equality q = n + 1 holds, so that for any constant ν ∈ IN the

minimum Euclidean distance dEm(S∗ν ) = ε in the vector constellation S∗ν with con-

stant average energy E(S∗ν ) tends to zero, when n→∞ and the code rate R is fixed

(see [Wyn65]).
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4. Matched Euclidean representations E ∗ of block codes C are Euclidean distance in-

variant (see [Loe91]). Consequently, E ∗RS are also Euclidean distance invariant.

5. For the AWGN channel the signal-to-noise ratio SNR (see equation 10) is constant

for E∗, when n → ∞ and ν and E(S∗ν ) remain constant. According to equation (9)

and the fact that S∗ν is a spherical code (so that E(sm,i) = E = const), it follows that

SNR = nE
nνσ2 = E

νσ2 = const, where σ2 is the constant variance of a single AWGN

component. As usual, we assume here that P [xm] = 1
M , m = 1, . . . ,M .

6. Any RS code the generator polynomial of which does not include the linear factor

(x − 1) contains all codewords of the form x(l) = (ψl, ψl, . . . , ψl), ψl ∈ GF(q), l =

1, . . . , q. (The proof of this statement will be given in the final version of this paper.

There we also give a discussion about the RS codes with generator polynomials which

include the linear factor (x− 1).)

7. In S∗ν , let f(ψl) and f(ψj) be of minimum Euclidean distance ε. Then, according to

item 6, there exist two codewords in E ∗RS of the form x
(l)
E = (f(ψl), f(ψl), . . . , f(ψl))

and x
(j)
E = (f(ψj), f(ψj), . . . , f(ψj)), where d0

E(x
(l)
E ,x

(j)
E ) = nε, so that the normal-

ized (divided by n) Euclidean distance is d0
E = ε and tends to zero for n → ∞

(according to item 3).

8. In [LazSen92] it was proved that (for constant SNR) the error exponent of constant

rate distance invariant block code families is zero, and thus also the capacity, when

the normalized minimum distance tends to zero as n→∞.

The items 1. to 8. imply that the family of matched Euclidean representations of Reed-

Solomon codes E∗RS have a family error exponent, and thus a family capacity for the AWGN

channel, equal to zero.
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